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Abstract
At the magnetic saturation field, certain frustrated lattices have a class of states
known as ‘localized multi-magnon states’ as exact ground states. The number
of these states scales exponentially with the number N of spins and hence they
have a finite entropy also in the thermodynamic limit N → ∞ provided they
are sufficiently linearly independent. In this paper, we present rigorous results
concerning the linear dependence or independence of localized magnon states
and investigate special examples. For large classes of spin lattices, including
what we call the orthogonal type and the isolated type, as well as the kagomé,
the checkerboard and the star lattice, we have proven linear independence of
all localized multi-magnon states. On the other hand, the pyrochlore lattice
provides an example of a spin lattice having localized multi-magnon states with
considerable linear dependence.

PACS numbers: 75.10.Jm, 75.50.Ee

1. Introduction and summary

Some years ago, a class of exact ground states of certain frustrated spin systems was discovered
[1]. These states can be characterized as localized one-magnon states (1-LM states) or multi-
magnon states (a-LM states, where a denotes the number of magnons involved) and span
highly degenerate subspaces of the space of ground states for a magnetic field h attaining its
saturation value hsat.

The 1-LM states are superpositions of spin flips localized on a zero-dimensional
subsystem, called ‘unit’. These units are not unique but always chosen to be as small as
possible. The reason for this is the desire to obtain maximally independent or unconnected
units which will host collections of localized magnons without interaction, the so-called a-LM
states.
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The LM states yield several spectacular effects near saturation field: due to these states
at zero temperature there is a macroscopic magnetization jump to saturation in spin systems
hosting LM states [1]. Furthermore, one observes a magnetic field induced spin-Peierls
instability [2] and, last but not least, a residual ground-state entropy at the saturation field [3–8].
Whereas huge ground-state manifolds as such are not unusual in frustrated magnetism [9], exact
degeneracies in quantum frustrated magnets are not so common. This ground-state entropy
leads to interesting low-temperature properties at h ≈ hsat such as an enhanced magnetocaloric
effect or a maximum in the specific heat at low temperatures. By mapping the spin model
onto solvable hard core models of statistical mechanics, exact analytical expressions for the
contribution of LM states to the low-temperature thermodynamics can be found [4–8].

In the context of these calculations, the following questions arise.
Does the number of LM states equal the dimension of the true ground-state space for

h = hsat, at least in the thermodynamic limit N → ∞?
In particular,

(a) Is the set of LM states linearly independent, and
(b) Does the set of LM states span the whole subspace of ground states or are there more

ground states than those of LM type?

The answers to these questions are, on one hand, of general interest, since they provide exact
statements about non-trivial quantum many-body systems, but are, on the other hand, crucial
for the contribution of the LM states to the thermodynamics at low temperatures and magnetic
fields close to the saturation field. However, so far these questions have not been considered in
the corresponding publications [3–8], except in [7] where some aspects for the sawtooth chain
and the kagomé lattice are briefly discussed. In this paper, we address mainly question (a)
concerning linear independence. We group frustrated lattices into classes, for three of which
we show rigorously that the multi-magnon states are indeed linearly independent and for the
fourth class we provide an example that this is not generally the case. Question (b) concerning
non-LM ground states will be treated elsewhere. The four classes, explained in detail below,
are the following.

(1) Orthogonal type:

(a) diamond chain (figure 1(a));
(b) dimer-plaquette chain (figure 1(b));
(c) frustrated ladder (figure 1(c));
(d) square kagomé (figure 1(d)).

(2) Isolated type:

(a) sawtooth chain (figure 2(a));
(b) kagomé chain I (figure 2(b));
(c) kagomé chain II (figure 2(c)).

(3) Codimension 1 type:

(a) checkerboard lattice (figure 3(a));
(b) kagomé lattice (figure 3(b));
(c) star lattice (figure 3(c)).

(4) Higher codimension type:

(a) pyrochlore lattice (figure 4).

It turns out that the spin systems of orthogonal or isolated type always admit linearly
independent LM states. We will show that the lattices of class 3 possess, up to a factor, exactly
one linear relation between their 1-LM states (hence the wording ‘codimension 1’), but have
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Figure 1. Examples of spin lattices admitting only orthogonal LM states (orthogonal type):
(a) the diamond chain [10], (b) the dimer-plaquette chain [11], (c) the frustrated ladder [12] (where
the spins are sitting only on the squares, not on the intersections of the diagonals) and (d) the
square-kagomé lattice [13]. Note that the ratios of the exchange constants J1, J2 have to assume
certain values in order to admit LM states, for more details see [8]. 1-LM states are localized on
small subsystems (‘units’) indicated by thick lines.
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Figure 2. Examples of spin lattices admitting only LM states with isolated sites (isolated type):
(a) the sawtooth chain [14], (b) the kagomé chain I [15] and (c) the kagomé chain II [16]. Note
that the ratios of the exchange constants J1, J2 in cases (a) and (c) have to assume certain values in
order to admit LM states. In case (b), all exchange constants are positive and equal. 1-LM states
are localized on small subsystems (‘units’) indicated by thick lines.

linearly independent a-LM states for a > 1, whereas the lattices of class 4 have more than one
linear relation between their LM states (higher codimension).

In section 2, we recapitulate the pertinent definitions for LM states. Section 3 is devoted to
some general algebraic methods and results related to linear independence. An elementary but
important tool is the ‘Gram matrix’ G(a) of all possible scalar products between a-LM states,
since linear independence of the a-LM states is equivalent to G(a) being non-degenerate, i.e.
det G(a) �= 0. It turns out that if G(1) is non-degenerate then all G(a) will also be non-degenerate
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(a) (b) (c)

Figure 3. Examples of spin lattices admitting only 1-LM states satisfying exactly one linear
relation (codimension 1 type): (a) the checkerboard lattice or two-dimensional pyrochlore [17]
(where the spins are sitting only on the squares, not on the intersections of the diagonals), (b) the
kagomé lattice [3, 18] and (c) the star lattice [3, 19]. All exchange constants are positive and equal.
1-LM states are localized on small subsystems (‘units’) indicated by thick lines.

Figure 4. The pyrochlore lattice [20] as an example of a spin lattice admitting a-LM states
satisfying more than one linear relation (higher codimension type). All exchange constants are
positive and equal. 1-LM states are localized on small hexagonal subsystems (‘units’) typically
indicated by thick lines.

for a � 1. These methods will be applied in section 5 to the special cases enumerated above.
The main result (theorem 5) is contained in section 4 and states that for a class of codimension
1 lattices, including the checkerboard (figure 3(a)), the kagomé (figure 3(b)) and the star lattice
(figure 3(c)), all a-LM states are linearly independent for a > 1, although the corresponding
1-LM states have codimension 1. This result has been checked for some finite versions of
the checkerboard lattice and some values of a, see table 1. We also confirmed theorem 5 for
some finite kagomé lattices but will not give the details here. For the higher codimension case,
we have no general theorem but some computer-algebraic and numerical results for certain
finite pyrochlore lattices (table 2). However, one can argue that the codimension of a-LM
states will be positive for some a > 1 due to localized linear dependences between 1-LM
states, see also [21, 22].

Summarizing, we want to stress that the question of linear independence of localized
multi-magnon states is relevant for thermodynamical calculations but, in general, non-trivial.
For certain mainly one-dimensional lattices including what we called the orthogonal and the
isolated types, the problem can be solved by relatively elementary considerations. Here all
multi-magnon states are linearly independent. The checkerboard, the kagomé and the star
lattice are more involved, but we have shown that they possess linearly independent localized
multi-magnon states except for a = 1. For the pyrochlore lattice, we know that the localized
one-magnon states are highly linearly dependent and that this will also be the case for the
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Table 1. Computer-algebraic and numerical results for various finite checkerboard lattices
(figure 3(a)) differing in size N. The spin quantum number is always s = 1

2 . The periodic
boundary conditions (PBC) are chosen with edge vectors parallel to the edges of the unit square
(P) or with both edge vectors rotated by 45◦ (R). The number 2A characterizes the length of the
lattice in one dimension, hence N = (2A)2 in case P. �a denotes the number of a-LM states and
‘Rank’ the number of linearly independent a-LM states. ‘DGS’ denotes the degeneracy of the true
ground state which was determined numerically. Empty entries correspond to numbers which have
not been calculated.

PBC N 2A �a Rank DGS

P 16 4 �1 = 8 7 9
�2 = 4 4 13
�3 = 0 1

P 36 6 �1 = 18 17 19
�2 = 81 81 118
�3 = 84 84 250
�4 = 18 18 83
�5 = 0 1

P 64 8 �1 = 32 31 33
�2 = 368 368 433
�3 = 1888 2833
�4 = 4392
�5 = 4224

P 100 10 �1 = 50 49 51
�2 = 1025 1025 1 126
�3 = 11 200 14 026
�4 = 71 150

P 144 12 �1 = 72 71 73
�2 = 2268 2268 2 413
�3 = 41 208

P 256 16 �1 = 128 127 129
�2 = 7616 7616 7 873
�3 = 279 936

R 32 4 �1 = 16 15 17
�2 = 56 56 89
�3 = 48 48 137
�4 = 12 12 31
�5 = 0 3

corresponding multi-magnon states except for states close to maximal packing. These results
are corroborated by computer-algebraic and numerical calculations for some finite lattices
ranging from N = 16 to N = 256. Thus, the pyrochlore case is only partly understood and
seems to be the major challenge for further research.

2. General definitions

We consider a spin system (�, s, Ĥ ) of N = |�| spins with general spin quantum number
s ∈ {

1
2 , 1, 3

2 , . . .
}

and a Heisenberg Hamiltonian

Ĥ =
∑

µ,ν∈�

Jµν

{
Ŝz

µŜz
ν +

1

2

(
Ŝ+

µŜ−
ν + Ŝ−

µ Ŝ+
ν

)} − hŜz, (1)
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Table 2. Computer-algebraic and numerical results for various pyrochlore lattices (figure 4)
differing in size N and periodic boundary conditions (PBC). The spin quantum number is always
s = 1

2 . The number 2A characterizing the periodicity is explained in the text. �a denotes the
number of a-LM states and ‘Rank’ the number of linearly independent a-LM states. ‘LB’ denotes
the lower bound for the rank (if positive) obtained by theorem 2. ‘UB’ denotes the upper bound for
the rank obtained by localized linear dependences between 1-LM states, see section 5.4. ‘DGS’
denotes the degeneracy of the true ground state which was determined numerically. Empty entries
correspond to numbers which have not been calculated.

PBC 2A N �a Rank LB UB DGS

Tetrahedral 4 32 �1 = 32 14 17
�2 = 160 72 104 89
�3 = 96 94 137
�4 = 24 24 31

Tetrahedral 6 108 �1 = 108 52 55
�2 = 4482 1252 1 324

18 244
Tetrahedral 8 256 �1 = 256 126 129

�2 = 29 568 4673 7 873
Cubic 4 16 �1 = 16 6 9

�2 = 0 13
Cubic 8 128 �1 = 128 62 65

�2 = 6592 1825 1289 1 889

where h is the (dimensionless) magnetic field. Since the z-component of the total spin
Ŝz = ∑

µ∈� Ŝz
µ commutes with Ĥ , its eigenvalue M (the magnetic quantum number) can be

used to characterize the eigenstates of Ĥ . � is assumed to be connected, that is, it cannot be
divided into two subsystems A and B such that Jµν = 0 whenever µ ∈ A and ν ∈ B.

The Hilbert space of the spin system is spanned by the basis of product states |m1, . . . , mN 〉
which are simultaneous eigenstates of Ŝz

µ with eigenvalues mµ. Let |0〉 = |s, s, s, . . .〉 denote
the fully polarized eigenstate of Ĥ (‘magnon vacuum’) and |µ〉 = (2s)−1/2Ŝ−

µ |0〉 the one-
magnon state localized at spin site µ ∈ �, which will not be an eigenstate of Ĥ .

The concept of a-LM states does not necessarily presuppose the Heisenberg model,
but also works with a more general XXZ model. For the XY model, the condition for
multi-magnon states can be relaxed. However, all examples considered in this paper will be
Heisenberg models and so we stick to this case in what follows.

Let G denote the symmetry group of �, i.e. the group of permutations σ of � satisfying
Jσµ,σν = Jµ,ν for all µ, ν ∈ �. The 1-LM states to be considered will be concentrated on a
given subsystem L ⊂ � or its transforms σL, σ ∈ G. In figures 1–4, the typical subsystems
L are indicated by thick lines. A localized one-magnon state with support L is an eigenstate
of Ĥ with magnetic quantum number M = Ns − 1 of the form

ϕ =
∑
µ∈L

cµ|µ〉, cµ ∈ C, cµ �= 0. (2)

It follows that for σ ∈ G the state

σϕ =
∑
µ∈L

cµ|σµ〉 =
∑
ν∈σL

cσ−1ν |ν〉 (3)

will be a 1-LM state with support σL. Note that σL does not uniquely determine σ , since
we may have σL = τL for σ �= τ ∈ G. Hence, also the state (3) is not uniquely determined
by σL. In order to fix the amplitudes of the states (3), we consider the subgroup GL of all
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permutations of G leaving L invariant. We choose a permutation from each left coset of G/GL

and denote the resulting set by GL = {
σ1, . . . , σ�1

}
, where

|GL| = |G/GL| = �1. (4)

This yields the unique 1-LM states with support L(i) ≡ σiL

ϕ(i) = σiϕ =
∑

ν∈σiL

cσ−1
i ν |ν〉 ≡

∑
ν∈L(i)

c(i)
ν |ν〉, i = 1, . . . , �1. (5)

The set of these states will be denoted by L1 and the corresponding subsystems L(i), i =
1, . . . , �1, will be called units. L denotes the set of units. By construction, G operates
transitively on L, i.e. all units are equivalent.

Next, we consider a-LM states. Two different units L(i), L(j) are called overlapping iff
they contain at least one common spin site, L(i) ∩ L(j) �= ∅, otherwise they are called disjoint.
Moreover, two different units L(i), L(j) are called connected iff there exist spin sites µ ∈ L(i)

and ν ∈ L(j) such that Jµν �= 0. Otherwise, L(i), L(j) are called unconnected. Sometimes it
will be convenient to identify the unit L(i) with its index i and to write i ∼ j in the case of
connected units.

Let 1 < a � N be some integer and S = {Li1 , . . . , Lia } ⊂ L be a set of mutually
unconnected units carrying 1-LM states. Further, let µj ∈ � for j = 1, . . . , a be different
spin sites and denote by |{µ1, . . . , µa}〉 the product state |m1, . . . , mN 〉 where mµj

= s − 1
for j = 1, . . . , a and mµ = s else. As indicated by the notation, this state will be invariant
under permutations of the set {µ1, . . . , µa}. Then

� =
∑

µj ∈L
(ij )

c(i1)
µ1

· · · c(ia)
µa

|{µ1, . . . , µa}〉 (6)

will be an eigenvector of Ĥ with magnetic quantum number M = Ns − a. States of this
kind will be called localized a-magnon states (a-LM states). La denotes the set of all a-LM
states. The number �a of a-LM states equals the number of subsets of mutually unconnected
subsystems S ⊂ L. Hence, there exists a maximal number amax of a-LM states such that
�a = 0 for a > amax. The sum

� ≡
amax∑
a=1

�a (7)

is the number of LM states.
If all units are pairwise unconnected, amax = �1, see examples 1(a), (b) and (d). In

general, amax � �1. For the XY model, not considered in this paper, the condition of mutually
unconnected units for a-LM states can be relaxed to the condition of mutually disjoint units.
Hence, the XY model admits more a-LM states than the corresponding Heisenberg spin system
if the spin system contains disjoint, connected units, as in the example of the checkerboard
lattice (figure 3(a)).

The following remarks apply to most of the examples considered above but are not intended
as additional assumptions for the general theory to be outlined in the next sections. In the case
of spin lattices, the symmetry group G contains an Abelian subgroup T of translations. In this
case, it would be natural to choose GL = {

σ1, . . . , σ�1

}
to consist of as many translations as

possible. In fact, in all examples mentioned above, except for the pyrochlore (figure 4), it is
possible to choose GL = T . This means that the translations operate transitively on the lattice
L of units or, equivalently, on the set L1 of 1-LM states. It would then be appropriate to denote
the 1-LM states by ϕr, where r denotes, for example, the vector pointing to the midpoint
of the corresponding unit. Consequently, it is possible to decompose the linear span of L1
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into irreducible representations of T which are known to be one dimensional and spanned
by states of the form ψk = ∑

r ϕr exp(ik · r) where k runs through the Brillouin zone of the
lattice. The states ψk are still ground states of the Hamiltonian for the subspace M = Ns − 1
corresponding to a constant ground-state energy and hence form a so-called flat band. It is
obvious that the states ψk are linearly independent iff ϕr are so since both Gram matrices are
unitarily equivalent.

However, one has to be careful in the case of linear dependence of the 1-LM states. It
is easily seen that also the space of linear relations between 1-LM states can be decomposed
into vectors of the form exp(ik0 · r) such that the corresponding linear relations assume the
form ψk0 = ∑

r ϕr exp(ik0 · r) = 0. Indeed, the states ψk are pairwise orthogonal and span
the same space as the 1-LM states which is impossible if all ψk �= 0. Hence, to d independent
linear relations between 1-LM states there correspond d relations of the form ψk0 = 0, i.e. d
‘holes’ in the flat band. The holes are ground states of the flat band which are not spanned
by 1-LM states. We will come back to this question when dealing with concrete examples in
section 5.

The pyrochlore lattice is more complicated and has to be considered in more detail
elsewhere.

3. The Gram matrix

Let (ϕ1, . . . , ϕn), ϕi ∈ H for i = 1, . . . , n, be a finite sequence of vectors in some Hilbert
space H and let G be the corresponding n × n matrix of all scalar products:

Gij = 〈ϕi |ϕj 〉, i, j = 1, . . . , n. (8)

G is called the Gram matrix corresponding to the sequence of vectors. It is Hermitian and
has only non-negative eigenvalues, see [23]. Moreover, the rank of G equals the dimension of
the linear span of (ϕ1, . . . , ϕn). Especially, (ϕ1, . . . , ϕn) is linearly independent iff det G > 0
[23].

We will apply this criterion (Gram criterion) to sequences of a-LM states. In this case,
we will call the dimension of the null space of the Gram matrix of the a-LM states the
codimension. It thus equals the number of independent linear relations between a-LM states.
Without loss of generality, we may assume that Gii = 1 for i = 1, . . . , n in the following. If
Gij = 〈ϕi |ϕj 〉 = δij , then the sequence (ϕ1, . . . , ϕn) is obviously linearly independent. This
case will be called the orthogonal case in the context of a-LM states. If Gij = 〈ϕi |ϕj 〉 is
sufficiently small for i �= j , the Gram matrix will still be invertible and the sequence will be
linearly independent. For example, the following criterion easily follows from Geršgorin’s
theorem [23] adapted to our problem.

Lemma 1. If the Gram matrix G satisfies
n∑

j=1,j �=i

|Gij | < 1 for all i = 1, . . . , n, (9)

then all eigenvalues of G are strictly positive and {ϕ1, . . . , ϕn} is linearly independent.

Next, we will express the Gram matrix G(a) of a-LM states in terms of the Gram matrix
G(1) of 1-LM states. This will yield the result that the a-LM states are linearly independent if
the 1-LM states are so. It will be sufficient to give the details only for a = 2 and to leave the
case a > 2 to the reader.

We will use the following lemma from linear algebra.
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Lemma 2. Let A : H −→ H be a linear, positive semi-definite operator and T be a subspace
of H with the projector P : H −→ T and the embedding P ∗ : T −→ H.

(1) If A is positive definite, then also its restriction PAP ∗ will be positive definite.
(2) Let N be the null space of A, then N ∩ T will be the null space of PAP ∗.

Proof. Obviously, (2) implies (1). For the proof of (2), we note that Aψ = 0 and ψ ∈ T
imply PAP ∗ψ = 0. Hence, N ∩ T is a subspace of the null space of PAP ∗. To show the
other inclusion, we assume that ψ ∈ T is in the null space of PAP ∗. Hence, 〈ψ |Aψ〉 = 0.
Expanding ψ into the eigenbasis of A and utilizing that A is positive semi-definite, we conclude
that ψ ∈ N . �

We now consider two 2-LM states �(12), �(34) supported by the pairwise unconnected
units L(1), L(2) and L(3), L(4), respectively. Hence, they can be written as

�(12) =
∑

µ ∈ L(1)

ν ∈ L(2)

c(1)
µ c(2)

ν |{µ, ν}〉, (10)

�(34) =
∑

κ ∈ L(3)

λ ∈ L(4)

c(3)
κ c

(4)
λ |{κ, λ}〉. (11)

The scalar product of these states is

G
(2)

(12)(34) = 〈�(12)|�(34)〉

=
∑

µ,ν,κ,λ

c
(1)
µ c

(2)
ν c(3)

κ c
(4)
λ 〈{µ, ν}|{κ, λ}〉. (12)

The scalar product 〈{µ, ν}|{κ, λ}〉 is non-zero only if {µ, ν} = {κ, λ}, that is (µ = κ and
ν = λ) or (µ = λ and ν = κ). In this case, the scalar product equals 1. Hence,

G
(2)

(12)(34) =
∑

µ ∈ L(1) ∩ L(3)

ν ∈ L(2) ∩ L(4)

c
(1)
µ c(3)

µ c
(2)
ν c(4)

ν +
∑

µ ∈ L(1) ∩ L(4)

ν ∈ L(2) ∩ L(3)

c
(1)
µ c(4)

µ c
(2)
ν c(3)

ν (13)

= G
(1)
13 G

(1)
24 + G

(1)
14 G

(1)
23 . (14)

If we ignore for a moment the condition of the units being unconnected, we could reformulate
equation (14) for general indices as

G
(2)

(ij)(kl) = G
(1)
ik G

(1)
j l + G

(1)
il G

(1)
jk . (15)

This equation can be viewed as a statement saying that G(2) is the restriction of G(1) ⊗ G(1)

to the symmetric subspace of C
n ⊗ C

n spanned by the basis vectors (ij) ≡ (ei ⊗ ej )sym ≡
1√
2
(ei ⊗ ej + ej ⊗ ei). Here ei, i = 1, . . . , n, denote the standard basis vectors of C

n. If G(1)

is invertible, then also G(1) ⊗ G(1) is invertible, since the eigenvalues of G(1) ⊗ G(1) are the
products of all pairs of eigenvalues of G(1). The same holds for the restriction of G(1) ⊗ G(1)

to the symmetric subspace of C
n ⊗C

n, see lemma 2(1). Actually, G(2) is the further restriction
of this matrix to the subspace spanned by the basis vectors (ij) such that the units L(i) and
L(j) are unconnected, and hence G(2) is invertible too, invoking again lemma 2(1).

The generalization to a > 2 is straightforward. Let G(1)⊗a
sym be defined as the restriction of

G(1) ⊗G(1) ⊗· · ·⊗G(1) to the totally symmetric subspace C
n⊗a
sym of C

n ⊗C
n ⊗· · ·⊗C

n. Then
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G(a) is the restriction of G(1)⊗a
sym to an appropriate subspace of C

n⊗a
sym and hence, by lemma 2(1),

invertible if G(1) is so. In summary, we have proven

Theorem 1. If the set of 1-LM states is linearly independent, then also the set of a-LM states
is linearly independent for all a > 1.

In the general case where the linear span of (ϕ1, . . . , ϕn) has the dimension n − d or,
equivalently, where the Gram matrix has a d-dimensional null space, the above considerations
can be used to derive upper bounds for the codimension of the a-LM states. To this end,
we consider the eigenbasis of G(1) instead of the standard basis of C

n, such that the first d
basis vectors belong to the eigenvalue 0 of G(1). The corresponding basis vectors of C

n⊗a
sym can

be parametrized by sequences (N1, . . . , Nn) of ‘occupation numbers’ satisfying Ni � 0 and∑n
i=1 Ni = a. This is familiar from Bose statistics. Sequences of occupation numbers can

equivalently be encoded as binary sequences of n+a−1 symbols containing n−1 zeros and a
ones. Such a sequence starts with N1 ones, followed by a zero and N2 ones, and so on. There
are exactly

(
n+a−1

a

)
such sequences, which hence is the dimension of C

n⊗a
sym . Those basis vectors

of C
n⊗a
sym which do not involve any eigenvectors of G(1) with the eigenvalue 0 are characterized

by occupation numbers with N1 = · · · = Nd = 0 or, equivalently, by binary sequences
commencing with d zeros. There are exactly

(
n+a−d−1

a

)
such sequences, which is thus the rank

of G(1)⊗a
sym . Consequently, the null space N of G(1)⊗a

sym has the dimension
(
n+a−1

a

) − (
n+a−d−1

a

)
.

Since G(a) is the restriction of G(1)⊗a
sym to some appropriate subspace T ,

(
n+a−1

a

) − (
n+a−d−1

a

)
is only an upper bound for the dimension of the null space N ∩ T of G(a), see lemma 2(2).
Setting n = �1, this yields the following theorem.

Theorem 2. If the codimension of 1-LM states is d, then the codimension of a-LM states is
smaller than or equal to

(
�1+a−1

a

) − (
�1+a−d−1

a

)
.

Since the number �a of a-LM states is smaller than or equal to
(
�1

a

)
, the estimate of

theorem 2 will only be useful for small a and not for a ≈ amax. Table 2 contains some
examples illustrating theorem 2.

We now turn to two other criteria concerning the codimension of a-LM states. The first
one is a criterion for linear independence.

Theorem 3. If there exists a spin site µ ∈ L which is not contained in any other unit L(i)

(‘isolated site’), then the set of a-LM states is linearly independent for all a � 1.

Note that this theorem covers the examples of class 2 (‘isolated type’) mentioned above.
For the proof, it suffices to consider the case a = 1 by virtue of theorem 1.

Assume L = L(1) and

0 =
�1∑

i=1

λiϕ
(i) =

�1∑
i=1

λi

∑
µi∈L(i)

c(i)
µi

|µi〉, (16)

using (5). By the assumption of the theorem, the state |µ〉 occurs only once in the sum (16).
Hence, λ1c

(1)
µ |µ〉 = 0, which gives λ1 = 0, since c(1)

µ �= 0 by (2). By symmetry arguments,
the assumption of the theorem holds for all L(i), i = 1, . . . , �i , hence all λi vanish and the
linear independence of (ϕ(1), . . . , ϕ(�1)) is proven. This completes the proof of theorem 3.

The second criterion yields a bound for the codimension of 1-LM states.
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Theorem 4. Assume that every spin site is contained in some unit L ∈ L. Moreover, assume
that there exists a unit L ∈ L with the property that for each spin site µ ∈ L there exists
exactly one other unit L(i) such that L ∩ L(i) = {µ}.

Then the codimension of L1 is less than or equal to 1.

Note that this theorem covers all examples of the codimension 1 type, see figure 3. For
the proof, we first show the following lemma.

Lemma 3. Under the assumptions of theorem 4, the set L is ‘connected’ in the sense that for
any two units L(i) and L(j) there exists a chain of pairs of overlapping units which starts with
L(i) and ends with L(j).

This lemma is readily proven by using the general assumption that the spin systems under
consideration are connected, see section 2. Hence, any two spin sites µ ∈ L(i) and ν ∈ L(j)

can be connected by a chain of suitable spin sites µn such that Jµn,µn+1 �= 0. By assumption,
every µn is contained in some unit L(in). It follows that L(in) and L(in+1) are overlapping or
identical units. This concludes the proof of lemma 3.

Returning to the proof of theorem 4 we first note that, by the assumptions and symmetry
arguments, every spin site µ is contained in exactly two different units. Let us consider again
an equation of the form (16) and let µ be an arbitrary spin site. By assumption, the state |µ〉
occurs exactly twice in the sum (16), say µ = µi ∈ L(i) and µ = µj ∈ L(j). It follows that
λic

(i)
µi

+ λjc
(j)
µj

= 0. Since the amplitudes c(i)
µi

do not vanish, the ratio λi/λj is uniquely fixed
for every pair of overlapping units L(i) and L(j) if not λi = λj = 0. By lemma 3, all ratios
λi/λj are fixed or all λi = 0. Hence, the space of vectors �λ with coefficients λi satisfying (16)
is at most one dimensional. This completes the proof of theorem 4.

4. Linear independence for codimension 1 type

Theorem 5. Assume that all linear relations between 1-LM states are multiples of

�1∑
i=1

ϕ(i) = 0. (17)

Then the set of a-LM states is linearly independent for a > 1.

Proof. We recall that the Gram matrix G(a) corresponding to the set of a-LM states
is the restriction of G(1)⊗a to the subspace T (a) of C

�1⊗a
sym spanned by states of the form(

ej1 ⊗ · · · ⊗ eja

)
sym, where ejn

are the standard basis vectors of C
�1 corresponding to 1-LM

states ϕ(jn) supported by pairwise unconnected units, see section 3. According to the
assumption of the theorem, the null space of G(1) is one dimensional and spanned by the
vector

∑�1
i=1 ei . Hence, the null space N (a) of G(1)⊗a is spanned by tensor products of

the form
�1∑

k=1

ej1 ⊗ · · · ⊗ ek ⊗ · · · ⊗ eja−1 , (18)

where the position of the factor ek is fixed throughout the sum. In view of lemma 2(2), it
remains to show that

T (a) ∩ N (a) = {0}. (19)
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To this end, we assume that some linear combination of vectors in N (a) of the form (18) lies
in the subspace T (a):

∑
j1,...,ja−1

Cj1,...,ja−1

�1∑
k=1

(
ej1 ⊗ · · · ⊗ ek ⊗ · · · ⊗ eja−1

)
sym ∈ T (a), (20)

where we have used the fact that T (a) ⊂ C
�1⊗a
sym . Hence, the coefficients Cj1,...,ja−1 will be

invariant under permutations of their indices. If we can show that all coefficients Cj1,...,ja−1

vanish, the linear independence of all a-LM states follows and the proof of theorem 5 is
done. First, we will rewrite the sum (20) as a linear combination of the standard basis vectors(
ek1 ⊗ · · · ⊗ eka

)
sym of C

�1⊗a
sym . To this end, it will be convenient to introduce some special

notation.
k is called a ‘monotone multi-index of length a’ iff k = (k1, k2, . . . , ka) such that

k1 � k2 � · · · � ka . We will write ek ≡ (
ek1 ⊗ · · · ⊗ eka

)
sym and denote by Ea the

set of all monotone multi-indices of length a such that at least two indices are equal.
Moreover, we will denote by type(k) = (n1, n2, . . . , na) the vector of numbers counting
equal indices of k. For example, type(1, 1, 2, 2, 2, 5, 8) = (2, 3, 1, 1, 0, 0, 0). The symbol
j ↼ k will mean that j is obtained by deleting exactly one arbitrary index from k. For
example, (1, 1, 2, 3) ↼ (1, 1, 2, 2, 3). The sum

∑
j↼k denotes the sum over all multi-indices

obtained from k by deleting exactly one index. It has a terms if a is the length of k,
i.e. it will contain repeated terms if k ∈ Ea . For example, the sum

∑
j↼(1,1,2,3) runs over

j = (1, 2, 3), (1, 2, 3), (1, 1, 3), (1, 1, 2).
After this preparation, we can rewrite the sum (20) in the form∑

j↼k

Cjek ∈ T (a). (21)

Recalling the correspondence between indices and units, it is obvious that ek ⊥ T (a) if ek ∈ Ea ,
since T (a) is spanned by basis vectors ek with even unconnected indices (units). Hence,∑

j↼k

Cj = 0 if ek ∈ Ea. (22)

Our plan is to show that all Cj = 0 by downward induction over n1 if type(j) =
(n1, n2, . . . , na−1).

n1 = a −1: here j = (j, j, . . . , j). Append one more j to obtain k = (j, j, . . . , j) ∈ Ea .
Hence,

0 =
∑
i↼k

Ci = aCj ⇒ Cj = 0. (23)

n1 + 1 → n1: let type(j) = (n1, n2, . . . , na−1) and choose k by pre-pending one more j1 to j.
Hence, type(k) = (n1 + 1, n2, . . . , na−1, 0) and k ∈ Ea . It follows that

0 =
∑
i↼k

Ci = (n1 + 1)Cj +
∑

m

Cm, (24)

where m in the sum
∑

m Cm denote multi-indices obtained from k by deleting the next index
of k different from j1 and so on. Hence, all m in this sum satisfy type(m) = (n1 + 1, . . .)

and thus Cm = 0 by the induction assumption. Then it follows from (24) that Cj = 0. This
concludes the induction proof and the proof of theorem 5. �

5. Special examples

We consider the four types of examples mentioned in the introduction separately.
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5.1. Orthogonal type

For all four examples of this type, the units are disjoint and any two different 1-LM states are
orthogonal. The same property holds for a-LM states and hence all a-LM states are linearly
independent for a � 1.

5.2. Isolated type

For all three examples of this type, the units contain isolated spin sites, and hence the conditions
of theorem 3 are satisfied. Consequently, all a-LM states are linearly independent for a � 1.

5.3. Codimension 1 type

The units of the kagomé lattice are hexagons and the amplitudes of the normalized 1-LM
states are the alternating numbers ± 1√

6
. We fix the amplitudes of one hexagon and obtain

the amplitudes of the other 1-LM states by translation. Hence, the amplitudes at one spin
site of two 1-LM states with overlapping units have different signs and the corresponding
scalar product gives − 1

6 . Since every hexagon has exactly six overlapping neighbours, the row
sums of the Gram matrix G(1) excluding the diagonal are −1 and the Geršgorin criterion of
lemma 1 does not apply. In fact, it is easy to see that the sum of all 1-LM states vanishes and
hence the codimension of these states is at least 1. (Note that this relation between the 1-LM
states was already given in [7].)

However, in the case of the checkerboard lattice (figure 3(a)), the amplitudes of 1-LM
states at the vertices of overlapping squares are the same. Hence, the linear relation assumes
the form

∑
r ± ϕr = 0, where the 1-LM states of every other row are multiplied by −1.

According to the discussion at the end of section 2, this corresponds to a wave vector of
k0 = (π, π), if the coordinate system for the k-vectors is oriented along the square’s diagonals.

In order to show that the codimension is at most 1, we invoke theorem 4, since all three
examples of codimension 1 type satisfy the assumptions of this theorem.

Alternatively, to prove that the codimension is exactly 1 for the kagomé lattice, we may
use the fact that the non-diagonal elements of G(1) are less than or equal to 0 and that the
Gram matrix is irreducible. This means that, even after arbitrary permutations of the 1-LM
states, the Gram matrix does not have a block structure with vanishing non-diagonal blocks
which follows from lemma 3. Then the theorem of Frobenius-Perron [23] can be applied and
it proves that the lowest eigenvalue of G(1), which is 0, is non-degenerate. The example of the
star lattice (figure 3(b)) is analogous.

We note that two units of the kagomé lattice are disjoint iff they are unconnected. The
set of units L can be viewed as an undirected graph, the edges of which are formed by pairs
of connected units i ∼ j, i, j ∈ L. For the kagomé and the star lattice case, the graph of L is
isomorphic to the triangular lattice.

We have the following

Lemma 4. For the kagomé lattice and the star lattice case, the maximal number amax of
pairwise unconnected units does not exceed 1

3 of the number of all units �1.

One can prove lemma 4 geometrically by drawing a hexagon Hi around each occupied
unit i ∈ L of an a-LM state. Due to the condition of pairwise disjointness, different hexagons
will not overlap. For the special state realizing a = 1

3�1, see figure 5, these hexagons fill the
whole triangular lattice L. For finite versions of the kagomé lattice, we can only conclude
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Figure 5. Left: the triangular lattice L of units (indicated by small circles) for the kagomé lattice,
showing an a-LM state with a = amax = 1

3 �1. The occupied units are indicated by filled circles.
For this state, the lattice L can be filled by hexagons drawn around each occupied unit. One of
these hexagons is shown in the figure. Right: the analogous figure for the checkerboard lattice.
Here the lattice L of units is a quadratic lattice with diagonals. The figure shows an a-LM state
with a = amax = 1

4 �1. For this state, the lattice L can be filled by 4-squares drawn around each
occupied unit. One of these 4-squares is shown in the figure.

amax � 1
3�1, since the filling of L with hexagons need not be consistent with the periodic

boundary conditions.
For the checkerboard lattice, the graph of L is isomorphic to the square lattice with

diagonals, see figure 5. Each occupied unit is connected to eight unoccupied units which span
a 4-square containing four small squares. These large squares may fill the whole graph L if
the size and the periodic boundary conditions are suitably chosen. Hence, we have

Lemma 5. For the checkerboard lattice, the maximal number amax of pairwise unconnected
units does not exceed 1

4 of the number of all units �1.

Note that for the checkerboard lattice with a maximal occupation satisfying amax = 1
4�1

there are two possible positions for each diagonal row of 4-squares [24]. This explains
the relatively high degeneracy of the a-LM ground state for a = amax which exceeds the
corresponding degeneracy in the case of the kagomé lattice or the star lattice.

For the kagomé and the star lattice, the linear relation between 1-LM states assumes the
form (17) and hence theorem 5 proves the linear independence of all a-LM states for a > 1.
In contrast, the 1-LM states of the checkerboard lattice satisfy

∑
i ± ϕ(i) = 0, as mentioned

above. However, after a suitable redefinition of the states ϕ(i), this sum also can be brought
into the form (17). More generally, this is possible for any linear relation of the form

ψk0 =
∑

r

eik0·rϕr = 0, (25)

see the remarks at the end of section 2.
Nevertheless, it will be instructive to check theorem 5 for some finite lattices by computer-

algebraic and numerical methods. In table 1, we present the corresponding results for the
checkerboard lattice. Related results showing that the degeneracy of the ground state exceeds
�a for some finite kagomé lattices have been obtained by Honecker [25].

Since the 1-LM states of the checkerboard are concentrated on open squares (i.e. without
diagonals) and each spin site belongs to two open squares, we have necessarily �1 = N/2 in all
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examples of table 1. The corresponding rank of the Gram matrix or, equivalently, the number
of linearly independent 1-LM states is �1 − 1, since the checkerboard lattice has codimension
1. The dimension of the ground state in the sector a = 1 is always �1 + 1, since there are two
ground states not spanned by 1-LM states: they correspond to the wave vector k0 = (π, π)

and belong to the flat (FB) and the dispersive band (DB), respectively; see the remarks at the
end of section 2. The amplitudes of these additional states can be written as

aFB(n1, n2) =
{

0, if n1 + n2 is odd,

(−1)n1 , if n1 + n2 is even,
(26)

aDB(n1, n2) =
{

0, if n1 + n2 is even,

(−1)n1 , if n1 + n2 is odd.
(27)

Here (n1, n2) ∈ Z
2 are the integer coordinates of the lattice sites of the checkerboard. These

states can be viewed as superpositions of ‘chain states’, which have alternating amplitudes ±1
along certain lines.

As mentioned above, each unit of the checkerboard lattice is surrounded by eight units
which are connected to the first one, if N is sufficiently large (N > 16 in our examples).
Hence, if one unit is occupied by a 1-LM state, there remain �1 − 9 free units to host another
1-LM state. Hence, �2 = 1

2�1(�1 − 9) for N > 16, see table 1. One can similarly argue
for a = 3: if two disconnected units are occupied, there are usually �1 − 18 units left for a
third 1-LM state. However, if the first two units are close together, only 17, 16 or 15 units
are connected with these and hence forbidden for the third 1-LM state. A detailed calculation
yields the formula �3 = 1

3!�1
(
�2

1 − 27�1 + 194
)

which is satisfied for our examples except for
the smallest lattices with N = 16 and N = 36, see table 1.

In all cases where we have explicitly checked the linear independence of a-LM states,
a > 1, for finite lattices, thereby confirming theorem 5, the number for the rank is listed
in table 1. The rank is always strictly less than the dimension of the ground state (DGS).
However, the ratio DGS/rank seems to approach 1 if N increases. This would justify to count
only the number of a-LM states as ground states in the thermodynamic limit N → ∞.

5.4. Higher codimension type, pyrochlore lattice

The infinite pyrochlore lattice can be obtained from a single tetrahedron by the following
construction. Starting with a tetrahedron with vertices at (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0),
one performs inversions about all vertices. In the next step, the lattice points obtained by all
possible inversions about the new vertices are added, and so on, ad infinitum. The analogous
definition for two dimensions and the equilateral triangle yields the kagomé lattice, hence the
pyrochlore lattice can be viewed as the three-dimensional analogue of the kagomé lattice.

The finite versions of the pyrochlore lattice are obtained by assuming appropriate periodic
boundary conditions (PBC). As in other cases, there are various possibilities for the subgroups
of translations which define the PBC. These subgroups are generated by three vectors called
‘edge vectors’ [26]. In our examples, we have chosen as edge vectors either even multiples
2A of the vectors (0, 1, 1), (1, 0, 1), (1, 1, 0) (tetrahedral PBC) or even multiples 2A of the
vectors (0, 0, 1), (0, 0, 1), (1, 0, 0) (cubic PBC).

The units of the pyrochlore lattice which support the 1-LM states are hexagons, see
figure 4. Each lattice site is contained in six hexagons, and each hexagon contains, of
course, six lattice sites. Hence, the number of 1-LM states, which equals the number of
hexagons, is �1 = N . For sufficiently large N (N > 32 in our examples), each hexagon
has a common edge with 6 other hexagons and a common vertex (without having a common
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Figure 6. Four localized magnon states on a pyrochlore lattice supported by hexagons at the faces
of a super-tetrahedron. The sum of these four states vanishes, which explains almost completely
the linear dependence of 1-LM states.

(This figure is in colour only in the electronic version)

edge) with 18 other hexagons. Hence, if one unit is occupied by a 1-LM state, there remain
N−(6 + 18 + 1) = N−25 units free for a second 1-LM state. Consequently, �2 = 1

2N(N−25)

for N > 32, see table 2.
For our purposes, these finite pyrochlore lattices are interesting, since they provide the

first examples of lattices admitting a-LM states with codimension higher than 1. This has
been shown for a = 1 and a = 2 and can be shown to hold also for larger a, see table 2 and
the last paragraph of this section.

That the codimension of the 1-LM states on pyrochlore lattices P exceeds 1 follows
already from the fact that its restriction to a plane spanned by three vertices of any tetrahedron
in P will be isomorphic to the kagomé lattice. For every such plane, the sum of the 1-LM
states concentrated on hexagons lying in that plane vanishes. Hence, we obtain a considerable
number of linear dependences among the 1-LM states of P .

Another kind of linear dependence among 1-LM states [21, 22] can be understood by
the vanishing of the sum of four 1-LM states (with suitably chosen signs) supported by four
hexagons lying on the faces of a super-tetrahedron, see figure 6, and spanning a so-called
truncated tetrahedron, or super-tetrahedron, see [27]. These super-tetrahedra have edges
which are three times as long as the edges of the tetrahedra forming the pyrochlore lattice.
Each super-tetrahedron contains four hexagons, and each hexagon lies in two super-tetrahedra.
Hence, there are exactly N/2 super-tetrahedra and the same number of linear relations between
1-LM states. However, these linear relations are not independent; they only span a space of
dimension N/2 − 1. In the examples considered, there are always exactly three additional
linear relations which are not due to super-tetrahedra.

The rank of the Gram matrix G(1), which equals the number of linearly independent 1-LM
states, is thus always equal to N/2 − 2. The degeneracy of the ground state DGS in the sector
a = 1 amounts to N/2 + 1, see table 2. This corresponds to three additional ground states
which are not spanned by 1-LM states and belong to the wave vector k = 0 and three different
bands: two flat bands and one dispersive band. Alternatively, the additional ground states can
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be thought as three chain states along three linearly independent directions of the tetrahedron.
For a > 1, table 2 confirms the inequalities �a > rank > LB, where LB is the lower bound of
rank derived from theorem 2, and DGS > rank. We expect that finite size effects are especially
strong for the considered three-dimensional pyrochlore lattices of the size 16 � N � 256 due
to the restrictions of the periodic boundary conditions. Nevertheless, the results of table 2 do
not contradict the conjecture that DGS ≈ rank in the limit N → ∞.

The existence of ‘localized linear dependences’ between 1-LM states has an interesting
consequence for the codimension of a-LM states for a > 1. Contrary to the situation of
theorem 5, it is now possible to construct non-trivial linear relations between a-LM states in
the following way. We will use again the notation of section 4 and write the linear dependence
of four states localized at a super-tetrahedron T in the form

∑4
k=1 ek = 0. Further, we consider

1-LM states with indices j1, . . . , ja−1 supported by hexagons which are pairwise disjoint and
disjoint to T. Then the vector

4∑
k=1

(
ej1 ⊗ · · · ⊗ ek ⊗ · · · ⊗ eja−1

)
sym (28)

lies in the null space of G(a) and thus corresponds to a linear relation between a-LM states.
This argument will be valid for all a except if a approaches amax. Then it may happen that
there do not exist a − 1 hexagons with the required properties. Hence, a certain part of the
codimension of a-LM states can be explained by localized linear dependences between 1-LM
states. This yields an upper bound for the rank of G(a) which we have indicated in table 2 in
the case where it could be calculated.
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